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ABSTRACT
We extend the Vandermonde determinant and then extend the classical
presentation of Schur functions as quotients of such determinants.

We prove (Theorems 1, 1’ below) two extensions of the Vandermonde determinant
(parts (a), (a’)), and then deduce some new presentations for Schur functions
(parts (b), (b’)). The evaluation of the multi-integrals of the form

% z2 Zn
/ dzl/ dz2"'/ dmnf(xla“-azn)’
z2 23 In41

for various functions f(z), is motivated by [2]. As an application of Theorem 1 we
evaluate, in Theorem 2, that integral when f(z) is the skew-symmetric function
aq(Z1,...,2y) as defined in [1, page 23)].

Our notations follow those in [1], and the proof of (b) here is a slight general-
ization of the proof of [1, (3.4)].

To formulate Theorems 1 and 2, we need the following notations:

Fixn,reN, 0<r, 1<n. Let a =(ay,...,a,) € N* and denote by B, the

following n X n matrix (in the complete symmetric functions hq,)

Ba = (}‘m(xj’ Tid1re-0s $j+r))1g£,j5n.
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Recall that § = §(n) = (n — 1, n —2,...,1,0), and denote Bs = By() = By,

THEOREM 1: With the above notations
(a) det(Bs) = [igicj<n(®i = 2j4r)
(b) Let A =(A1,...,An) be any partition, then det(B;s) divides det(Ba+s), and
[det(Bs)]~! - [det(Ba+s)) = sa(z1,22,...,Zntr) (the corresponding Schur

function).

THEOREM 2: Let A = (Ay,...,As) be a partition (of at most n parts), then

n 22 Zn
/ d:n/ dzg---/ dr, H (zi —zj)| - salz1y.. ey Zn) =
7 za Zn41
1

1<i<j<n

M+n)Az+n-1)---(A+1) ) lsi<1j-£n+1 (zi — zj) - salz1,. .y Zn41).

Note: If r =0, then ho,(z;) = 27, and the above Theorem 1 becomes
(a) the classical Vandermonde determinant, and
(b) the classical presentation of the Schur function sx(z1,...,za) [1, (3.1)].
Part (a), which we prove first, is a consequence of Lemma 5 below. The proof

of (b) is then a slight extension of the argument in [1, page 25].

LEMMA 3: Let 0 < s, 1< u < v integers, then

s
ha(z1,ee o) = 3 Bj(21,0 -, Tu)homj(Tuts o5 B0
Jj=0

Proof: QObvious from the definition of the functions h,(z1,. .. Z.). |

COROLLARY 4: When u =v — 1, we have
3
ho(z1y...,20) = Zhj(xl,...,:r,,_l)'xz".
j=0

By symmetry, we also have

ho(z1y...,20) = Zz{h,_j(xg, ceeyTy)-

j=0
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LEMMA 5: Let s > 1, then
h,(xl, o ,.'C,,) - h,(:tg, e ,x,,+1) = (.’t] - $v+1)h,_1(.’£1, o ,:C,,.+1)

(this extends the well known identity =} — z§ = (24 — Zb)hs—1(2a, 2s)).
Proof: It easily follows by the above 3 and 4. |

6. The proof of 1(a): By induction on n. Note that the last row of Bga) consists

of all 1's. Subtracting the j** column from the j — 1 column, j = 2,...,n, we

obtain : .
det(BY),)) = [ (2 — zi14r) - det(BSHD)
i=1

from which the proof follows by induction. |
We turn now to the proof of (b), following [1, page 25].

Definition 7: Let @ = (aq,...,a,) € N*, then define the following three n x n
matrices Hy, B, and M (",

Ha(-'tl yeoey $n+r) = (haa—n+j(xl, cen ,mn+r))15i,j$na

Bo = (hai(%j,Tj41, -y Tjtr)1<i,j<n

and M® = (1) e(k.i§+1,...,k+r))lSi,ks"_

n—t
k,....k .
Here eg ’ +r)(.’t) = e¢(T1y-+yTh=1,Tk4r+1s-- - Tntr) is the £-th elementary
symmetric function in the n — 1 variables z1,...,Zk=1, Tk4rt1;--« ) Tntr

LEMMA 8 (analogue of [1, (3.6)]): With the above notations By = H, - M(7,

Proof: Denote

n+7‘ . n—1
E(k""’H")(t) - H (1 + a:.'t) = Z Cgk"“”""')(z) . tz’
i=1 t=0
ik, k+r

and H(t) =T (1 —2it)™" = 1520 hj(z1,. .., @atr )t Clearly,

=1

oo
H(ty E®k40 (o) = T = 2it) ™ = ) hj(zhye oo Trge)t.

=0

Equating the coefficients of 9, we have:

Zuhu(@1,- oo Zagr ) (1T EE T (@) = hy(2ky -, Zhgr).
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Substituting ¢ = a; and u = a; — n + j (so ¢ — u = n — j), we obtain

n

Y hagenti(@rse s Zab (=) e (2) = oyl Thgr)-
i=1

In matrix form, the equation is B, = Hy - M (), |

9. The proof of 1(b): Take determinants in Lemma 8.
det(Bg) = det(H,) - det(M").

Ha;=Ai+n—1(e,a=A+6), then a; —n+j = A; — i + j, hence, by
(1, (3.4)], det(Hx4s) = sa(21,...,Tntr) is the corresponding Schur function. In
particular, det(Hs) = so(z) = 1, hence, by setting & = 6 (so A = 0), we deduce
that det(M(')) = det(Bjs) (f) Micici<n(Ti — Tj4r).

Setting & = A + §, we obtain

det(B)‘.Hs)

Sx(Z1,. -y Tntr) = det(Hirgs) = det(Bs) )

In the theory of symmetric functions, there is a duality between the hy’s and
the ey’s. Since some of the above functions involved only part of the variables,
the conjugation operator w [1, page 14] cannot be applied here.

However, dualizing 1 + 2t «— (1 — 2¢)~! and h < ¢, one follows step by

step the previous argument, proving

THEOREM 1’: Let n — 2 < r and denote

Ca = (ea;(js- -+ Tjtr)igiign-

Then
(a) det(Cs) = 2} T (20 — zry24i-j)
(b’) Let A = (Ay,...,A,) be any partition, then det(Cj) divides det(Ci45), and
[det(Cs)] 7! - [det(Crss)] = sn(T1y- - -y Tntr)-
We sketch the proof!
Follow 3, 4 and 5 with IT?_, (1 + z;t) (and e;’s) replacing IT{_, (1 — z;t)~! (and
h;’s), to deduce

4 tey(z1,...,2y) — €a(T2, 0 s Tug1) = (T1 — Tog1)es—1(T2,. .., Ty).
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The rest is identical to the proof of (a).
To prove (b’), follow “conjugated” 7 and 8:
Define E(t) = 1?7 (1 + z;t),

i=1

n+r
H(k,...,k+r)(t) = H (1- :):,-t)—l.
i#k:.-_-..:k+r
Then E(t) - H**+0)(t) = THI(1 4 z;¢).

Let Ea(zl, sy :C,,.H-) = (ea'._,,+j(:c1, vy I"+T))15i»jS” and N(r) = ((—1)“_j
hs.k_"]:"k+r)(z))155,jsn (where hgk""’k+r)(z) = hq(xl yor s ThelyThtrtly: -y .‘l:,.+,-).
Following (“conjugated”) 7 and 8, we obtain that Co = E,N (),

Follow the argument in 9 now, but apply [1, (3.5)] (instead of (3.4)), to conclude
the proof of (b’).

Various extensions of 1, 1’ exist. For example, let

Boa(y,z) = (ha; (Y15 1 Yds Ty o oy Tir))1<i, i<y

Ha(y’x) = (ha.'—n+j(y1 yeeosYdy Ty )zn+r))lgi<j$n,

and MY = M()(z) as in 1. Then B,(y,z) = Ha(y,z) - M (z), which implies
that

(a) det Bs(y,z) = det M) (z) (Vandermonde!) and

(b) a presentation of sx(Y1,--.,Yd,T1y---»Tntr):

We turn now to

The proof of Theorem 2: By [1, (3.1)],

L= H (zi — ;) - salz1,...,2a) = as - sa
1<i<j<n

= det(JI?" )i<i,j<n (aj=Aj+n—3j)

= Z sgn(o)z; M gyt (S is the symmetric group).
o€S,

Denote f: dey--- [

z
Zn41

dz, by [, dz. Clearly,

z(zf . P = ! .
/,d[‘ ) (Br+1)(Bat1)

(21 — 22)(22 — 23) -+ - (2n ~ Zn41) - b, (21, 22)hp, (22, 23) - - hg, (20, Zn41).
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Thus

/dzL z sgn(o) /da: 27°®W . gn™ =L, - L, where

oES,

1
(a1 +1)---(an+1
Ly =Y sgn(0)ha,)(21,22)hayy(22,28) By (2 Zni1)
0€Sy
det(ha; (2, 2j41))1<i,j<n-

Ll = ) '(Z] —22)(22 —23)"'(2,,—Zn+1) and

By Theorem 1 with r =1, Ly = [] (2i — zj41) - sa(21,...,2n41) and the
1<i<j<n
proof now follows since

(1—22)(zn—zar) [ Gi—ze)= [ (ai-2).
1<i<j<n 1<i<j<nt1
|

Note: Since the polynomlals £I < (zi—z;j)sa(z1,...,2,) form a basis for the
n

anti-symmetric polynomials, one can now evaluate fz dz for any such function.
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